Gromov Hyperbolic Spaces and the Sharp Isoperimetric Constant

نویسنده

  • STEFAN WENGER
چکیده

In this article we exhibit the largest constant in a quadratic isoperimetric inequality which ensures that a geodesic metric space is Gromov hyperbolic. As a particular consequence we obtain that Euclidean space is a borderline case for Gromov hyperbolicity in terms of the isoperimetric function. We prove similar results for the linear filling radius inequality. Our theorems strengthen and generalize well-known results of Gromov, Papasoglu and others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Small Cancellation Properties of Random Groups

We work in the density model of random groups. We prove that they satisfy an isoperimetric inequality with sharp constant 1− 2d depending upon the density parameter d. This implies in particular a property generalizing the ordinary C ′ small cancellation condition, which could be termed “macroscopic cancellation”. This also sharpens the evaluation of the hyperbolicity constant δ. As a consequen...

متن کامل

Cheeger Isoperimetric Constants of Gromov-hyperbolic Spaces with Quasi-poles

Let X be a non-compact complete manifold (or a graph) which admits a quasi-pole and has bounded local geometry. Suppose that X is Gromov-hyperbolic and the diameters (for a fixed Gromov metric) of the connected components of X(∞) have a positive lower bound. Under these assumptions we show that X has positive Cheeger isoperimetric constant. Examples are also constructed to show that the Cheeger...

متن کامل

Gromov Hyperbolic Spaces and Optimal Constants for Isoperimetric and Filling Radius Inequalities

A. In this article we exhibit the optimal (i.e. largest) constants for the quadratic isoperimetric and the linear filling radius inequality which ensure that a geodesic metric space X is Gromov hyperbolic. Our results show that the Euclidean plane is a borderline case for the isoperimetric inequality. Furthermore, by only requiring the existence of isoperimetric fillings in L∞(X) satisfy...

متن کامل

Characterizations of Metric Trees and Gromov Hyperbolic Spaces

A. In this note we give new characterizations of metric trees and Gromov hyperbolic spaces and generalize recent results of Chatterji and Niblo. Our results have a purely metric character, however, their proofs involve two classical tools from analysis: Stokes’ formula in R2 and a Rademacher type differentiation theorem for Lipschitz maps. This analytic approach can be used to give chara...

متن کامل

Sharp and Rigid Isoperimetric Inequalities in Metric-measure Spaces with Lower Ricci Curvature Bounds

We prove that if (X, d,m) is a metric measure space with m(X) = 1 having (in a synthetic sense) Ricci curvature bounded from below by K > 0 and dimension bounded above by N ∈ [1,∞), then the classic Lévy-Gromov isoperimetric inequality (together with the recent sharpening counterparts proved in the smooth setting by E. Milman for any K ∈ R, N ≥ 1 and upper diameter bounds) hold, i.e. the isoper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007